When your SQL Server isn’t performing as expected, it’s tempting to think that upgrading hardware is the quick fix. More CPUs, extra memory, faster disks—they all sound like solutions that should solve the problem. But before you start investing in new equipment, it’s worth taking a step back to see if optimization can address the issues.
Category: Indexing
Diagnosing and Resolving Last Page Insert Contention in SQL Server
In high-concurrency environments, SQL Server databases may experience performance bottlenecks due to contention issues. One common issue is Last Page Insert Contention, which occurs when multiple sessions attempt to insert records into the last page of an index simultaneously. This contention can lead to significant wait times and reduced performance, particularly in tables with ever-increasing key columns. We will look at page insert contention and give recommendations for improvement.
The Hidden Costs of Over-Indexing SQL Server Tables
Over-indexing in SQL Server can lead to hidden costs that undermine database performance, including increased storage consumption, performance overhead on data modifications, and longer maintenance windows. This article explores how excessive indexing impacts query optimization, disk I/O, and system resources. Learn why a balanced indexing strategy is critical and discover best practices for managing your indexes effectively. Avoid the pitfalls of over-indexing and optimize your SQL Server for both performance and cost-efficiency.
Using Query Hints to Solve SQL Server Performance Issues
As professional DBAs, we’re often tasked with balancing query performance against resource consumption. While SQL Server’s query optimizer generally does an excellent job at selecting execution plans, there are times when we need more control. This is where query hints come into play. These hints provide a powerful way to override the default behavior of the query optimizer, allowing us to directly influence how queries are executed to solve performance bottlenecks. In this post, we will explore how query hints can be leveraged to address common performance issues and fine-tune your SQL Server workloads.
Strategies for Optimizing Version Ghost Record Cleanup in SQL Server
This blog explores the challenges and strategies for managing version ghost records in SQL Server. It discusses issues like single-threaded cleanup tasks, long-running transactions, and locking levels that impact the cleanup process. The post provides actionable strategies such as updating SQL Server, utilizing trace flags, and regular index maintenance to improve ghost record cleanup efficiency.
Understanding the Importance of Bucket Counts in Hash Indexes for Memory-Optimized Tables
In the realm of memory-optimized tables, every table must have at least one index to connect its rows. Notably, every index on such tables is also memory-optimized. Among the various types of indexes available, hash indexes stand out for their unique structure and functionality. Understanding the importance of bucket counts in hash indexes for memory-optimized tables is crucial for maintaining optimal performance in SQL Server. This post looks at the structure of hash indexes, how to specify and adjust bucket counts, and the consequences of incorrect bucket counts. Learn best practices for planning and optimizing your hash indexes to ensure efficient data management and avoid common performance pitfalls.
Optimizing SQL Server with the Tuple Mover and Columnstore Indexes
SQL Server’s performance and efficiency hinge on its ability to manage and store data effectively. At the heart of this capability are Columnstore Indexes and the Tuple Mover, a duo that works together to ensure data is stored efficiently, making it readily accessible for fast query execution. This post takes a look into the interplay between Columnstore Indexes and the Tuple Mover, highlighting the operational details and the impact of recent enhancements introduced in SQL Server 2019.
Preventing Page Splits with Optimal Fill Factor Settings
The SQL Server Fill Factor is a setting that can be applied to indexes, which determines the amount of space to leave empty within the index pages. This setting is crucial for managing how densely SQL Server stores the index data on each page. It’s primarily used to improve performance and reduce page splits during insert or update operations that modify the index. The Fill Factor is specified as a percentage value.